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Abstract. An improved method for solving time-dependent problems in quantum mechanics,
in the customary cases of constant or harmonic perturbation, is applied to the calculation of the
self-energy of electrons interacting with phonons in solids. The mixing of unperturbed Bloch
states, resulting from the actual coupling, is self-consistently taken into account, and the related
quantum probability amplitudes are determined through direct integration over the quasiparticle
spectrum. Laplace transform and elementary mathematics are used, thereby enhancing the
physical transparency, and bringing out approximations in every stage. Explicit illustrative
results are worked out in the simple case of slowly varying self-energy parameters. The method
is critically compared with the standard Green function approach, and further encourages more
detailed applications.

1. Introduction

The calculation of self-energies is the key element in a number of interacting particle
many-body problems, particularly in condensed matter. As a typical example, the electron
self-energy due to electron–phonon coupling in solids has been of considerable importance,
because of its major role in the theoretical interpretation of superconductivity, enhanced
in recent years by the advent of high-temperature superconductivity. Determinant features
of this interaction were initially pointed out by Frölich in a pioneering work [1], followed
by Bardeen and Pines [2]. These early treatments were of a rather static nature, and the
dynamical aspects of the coupling were more explicitly introduced later, in particular by
Migdal [3], Gorkov [4] and Eliashberg [5]. Today, most existing works in that field, and
also in other many-body problems, rely on Green function techniques.

However, the physics underlying Green function methods and inherent unavoidable
approximations are somewhat concealed by formal mathematical procedures implemented
therein. The purpose of this paper is to propose an alternative method to address situations
of the type mentioned above, in which each stage in the progress from the Schrödinger
equation to the inquired answers, can be well monitored. This will be based mainly
on the use of the Laplace transform, in conjunction with an improved method to solve
the time-dependent Schrödinger equation, in the customary cases of constant or harmonic
perturbations [6], ensuring norm conservation at any time and any order of the coupling
strength, and including at once the Dyson equation of self-energy.

The Laplace transform offers several advantages well suited to physical applications.
For example, it permits us to deal with evolution processes starting properly fromt = 0,
and to extract conveniently long-term behaviours, while convergence requirements are very
wide (the integrand must not increase faster than the exponential). Appropriate functions
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are naturally introduced without the need of analytic continuation, or the insertion of small
imaginary parts to ensure mathematical convergence. The consideration of evolution in
negative times [7] is avoided, as well as the introduction of the Matsubara periodic function
in the calculation of statistical averages [8].

The major results of the method will be briefly recalled in section 2, with some suitable
adaptation. They will be applied in section 3 to the electron–phonon interaction in metals,
with some emphasis on the Frölich coupling. The main step will be the calculation of
the evolution operator including the self-energy, on the unperturbed state basis, taking into
account in a self-consistent way the mixing of states due to the coupling, and the related
spreading of the Fermi distribution. Some simplifying assumptions will be adopted so as to
enlighten methodological aspects, for example the salient features in the description of the
interactions in terms of quasiparticles. Section 4 will be devoted to a summary and a brief
discussion of the results, compared with the standard Green function approach.

2. The determinantal solution of the evolution operator

LetH0 denote an unperturbed Hamiltonian, with eigenstatesb, c, . . . and related eigenvalues
Eb,Ec, . . . . Energies will be expressed in frequency units throughout. First we assume a
constant perturbationV , applied fromt = 0. The evolution of the system is then described
by the customary operatorU(t), satisfying the Schr̈odinger equation

i
dU(t)

dt
= [H0+ V Y(t)]U(t) (1)

whereY (t) is the Heaviside step function. We shall work with the Laplace transform of
U(t)

U(ν) =
∫ ∞

0
e−νtU(t) dt

which satisfies the transformed equation,

νU(ν) = U0− i(H0+ V )U(ν) (2)

with U0 = U(t = 0). Introducing the operatord = νI + iH0 (with I the identity operator)
which is diagonal on the basis of theH0 eigenstates, and the temporary notationK = iV ,
the above equation can be rewritten more briefly,

(d +K)U(ν) = U0. (3)

Regarding equation (3) as a linear system in the discretized Hilbert space, before passing
to the thermodynamic limit, the matrix elementsUc

b = 〈c|U |b〉 between the starting stateb
and anyc, [Uc

b (t = 0) = δcb] are written in terms of the related determinantD and minors
Dc
b of the matrixI + d−1K,

Uc
b = Dc

b/dbD. (4)

As shown in [6] with the help of elementary properties of determinants, the natural solution
which can be derived upon expansion of determinants in increasing powers of the kernelK,
exhibits unphysical closed sequences of transitions which can be removed through division
by the diagonal minorDb

b relative to the starting stateb,

Uc
b = Dc

b(D
b
b)
−1/dbD(D

b
b)
−1. (5)
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The determinant quotients can then be given a more explicit operational expression, on
defining the matrixSb = I +d−1KQb, whereQb denotes the projector on the Hilbert space
complementary to the stateb (see appendix A)

Ub
b =

1

db(1+ 〈b|S−1
b d−1K|b〉) Uc

b = −
〈c|S−1

b d−1K|b〉
db(1+〉b|S−1

b d−1K|b〉) (c 6= b). (6)

As in the starting determinantal forms (4) or (5), these expressions are exact results. In
particular, the unitarity of the solution is preserved at any time and with any order of the
kernelK, providing the highest order kept in the upper and lower series, upon expansion of
the S−1

b ’s are in accordance. These expansions which yield vortex corrections beyond the
lowest order inK, are close to perturbation series, except for the exclusion of the initialb

state from intermediate summations, as imposed by theQb’s. Because of the same exclusion
of the b states, only proper self-energy parts arise in the denominators of equations (6), in
the form required by the Dyson theorem, i.e. after summing over all diagrams which can
be split into several parts by cutting internal lines [7].

Apart from a factori, the Laplace transformUb
b (ν) is analogous to the Green function

Fourier transform, the important properties of which are easily recovered. The poles of
Ub
b (ν) which give rise to a quasistationary (damped) function of time, will provide the

quasiparticle spectrum, while its real part will provide the related spectral density (see
appendix B).

It may occur that the fractional forms (6) are not sufficient. The method can then be
pushed one step further [6], leading for example to improved forms of the self-energy.
Expressions of type (6) will thus be written in terms of determinant ratios, up to a desired
form of the solution. Only in the final form, will the thermodynamic limit be re-established
in the quasicontinuous parts of the spectrum.

Finally, the preceding results can be extended to the case of harmonic perturbation, in
which V (t) (still assumed to be applied att = 0) is taken in the form

V (t) = g exp(−iωt)+ g+ exp(iωt). (7)

Equation (2) becomes

νU(ν) = U0− i[H0U(ν)+ gU(ν + iω)+ g+U(ν − iω)] (8)

which represents a set of recursion equations linkingU [ν + i(n − 1)ω], U(ν + inω) and
U [ν+ i(n+1)ω], wheren is an integer. It is convenient to introduce the following notations
for the matrix elements ofd andU

dcn = 〈c|d(ν + inω)|c〉 = ν + i(Ec + nω) U
c(n)
b = 〈c|U(ν + inω)|b〉.

Fourier indicesn can be included in the Hilbert space, besides normal quantum numbers
b, c, . . . as investigated by Shirley [9]. This allows us to regard theUc(n)

b ’s as thecn
components of theU |b〉 vector [6], and to rewrite the set of equations (8) as follows

dcnU
c(n)
b + i[gckU

k(n+1)
b + g+ck Uk(n−1)

b ] = δcb (9)

with n assigned some fixed reference value in a given state. Now, the solutions (6) can easily
be generalized by introducing the following matrix elements of the kernel in equation (9),

Kc2n2
c1n1
= i(gc2

c1
δn2−1
n1
+ g+c2

c1
δn2+1
n1

).

For any starting value ofn, we have

U
b(n)
b = 1

dbn(1+ 〈bn|S−1
bn d

−1K|bn〉) U
c(n′)
b = − 〈cn′|S−1

bn d
−1K|bn〉

dbn(1+ 〈bn|S−1
bn d

−1K|bn〉) (10)
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with Sbn = I + d−1KQbn, c 6= b and (or)n′ 6= n.
Hereafter, we shall be mainly interested in the departure from the unperturbed behaviour

in equations (6) and (10), giving rise to off-diagonal elements and to theK contribution in
the denominators (self-energy).

2.1. Thermodynamic average

We now turn to the calculation of the thermodynamic average of observables O

〈O〉 = Z−1 Tr(e−βHO)

with Z = Tr e−βH andβ = 1/kBT . As harmonic perturbation only gives rise to translations
by ω in the Laplace space, it will be sufficient to consider the case of constant perturbation.

Let us gain some insight into the self-consistent determination of the long-term steady
state of the whole system. The initial many-body eigenstates|B〉 of energyEB , assumed
to be close to the most probable ones from both a quantum and statistical point of view,
are submitted to the evolutionU(t) defined by the Schrödinger equation, and consisting
of internal transitions between basis states. The initial definition of the|B〉’s is then self-
consistently refined so as to retrieve the same starting|B〉’s at any time. On the other
hand, providedH0 denotes the total unperturbed Hamiltonian including both interacting
subsystems, after the time-independent potentialV has been applied, the solution of the
Schr̈odinger equation can also be formally written asU(t) = e−iHt [H = H0 + V ].
Then in a sufficiently accurate theoretical description one should necessarily find, at least
approximately, that diagonal elements are recovered, i.e.

e−iHt |B〉 = e−iEBt |B〉.
The basic assumption of the quasiparticle concept, in the Fermi liquid theory, states that
this is possible providing the quasiparticle lifetime is long enough. It follows that, on
substitutingβ for the imaginary time it ,

e−βH |B〉 = e−βEB |B〉.
Hence, the expression of the statistical average

〈O〉 = Z−1
∑
B

〈B|O|B〉e−βEB . (11)

This can be written more explicitly if many-body interactions are described by means of
independent quasiparticles. Then, in the occupation number representation, theEB ’s are
eigenvalues of some energy operatorE in the form

E =
∑
k

Ekc
+
k ck

and, as is well known, the statistical operator can be expressed in terms of individual
statistics [10]. For fermions,

Z−1e−βE =
∏
k

[(1− fk)ckc+k + fkc+k ck] (12)

wherefk ≡ f (Ek) is the Fermi function of individual energiesEk. In the case of bosons
in statesq of energyωq , we have, similarly,

Z−1e−βE =
∏
q

(1− e−βωq )e−βωqa
+
q aq . (13)

As physically expected, the quantum statistics of independent particles can be used for
quasiparticles.
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3. Electron self-energy in coupling with phonons

In order to realize at best the efficiency of the determinantal method, we now proceed to
apply the general solutions (10) to a specific problem of major interest, such as the electron–
phonon coupling which has been extensively studied until now [11–17]. In particular we
aim to see how the method may help in calculating the related electron self-energy. Since
the interest is mainly focused on the efficiency of the method, irrelevant details will be
ignored. Thus, it will be sufficient to restrict ourselves to one electronic band, without
specifying band and spin indices, and one-phonon branch in a lattice ofN cells, with one
atom (of massM) per cell. The coupling potential between an electron in the basis of Bloch
statesk of energyεk, and the phonon of wavevectorq, frequencyωq, and polarizationσq,
will be taken in the usual form

Vk =
∑
q

(g
k+q
k e−iωq t aqc

+
k+qck + gk−qk eiωq t a+q c

+
k−qCk) (14)

with

g
k±q
k = −N 1

2αqσq〈k ± q|∇rν(r)|k〉 αq = (h̄/2Mωq) 1
2 .

ck, c
+
k andaq, a+q denote the customary annihilation and creation operators of electrons and

phonons, respectively.ν(r−Rn) is the interaction potential between the electron atr and
the ion at the lattice siteRn.

We first note that because of the mixing between Bloch states owing to the interaction,
the step-like shape of the Fermi function is spread about the Fermi level, thus allowing for
transitions in both directions betweenk andk′, even atT = 0 K. Thus we have to start
with anN -body wavefunction incorporating this important physical feature and to proceed
self-consistently. In the occupation number representation, collective Bloch states are of
the type

|b〉 = |1k1, 0k2, 1k3, . . .1kj , . . .0kl , . . .〉 (15)

where 0 and 1 represent unoccupied and occupied states, respectively. The simplest proper
wavefunction of the dressed electrons, allowing for intermediate occupations of anyk, will
be obtained by taking the most general combination

|ψB〉 =
∏
k

(uk + νkc+k )|0〉. (16)

|0〉 is the vacuum state,uk and νk the probability amplitudes for thek state to be either
empty or occupied, respectively. The number of particles is left undetermined, in accordance
with a grand canonical distribution which we shall adopt. Actually, electrons involved in
the interaction with phonons are concentrated in a thin shell of thek-space near the Fermi
surface, and represent a rather small fraction of the total number. All other electrons are
‘frozen’ by the exclusion principle, and behave like a reservoir imposing their chemical
potential to the interacting ones. It follows that the energy needed to add up a carrier at
the Fermi level in the interacting system is just zero, so that the carrier energies must be
referred to the Fermi level, which, as usual, will be taken for the energy origin. In fact,
the basic state defined in equation (16) is thought to a dynamical steady state sustained by
the interactions, in so far as the quasiparticle damping is not too strong. The occupation
numbersuk andνk must satisfy the normalization condition

|uk|2+ |νk|2 = 1 (17)

which ensures, in turn, the normalization of|ψB〉. They can be taken with the same
phase, without loss of generality, and are to be determined self-consistently. When the
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contribution of particular components,k,k′, . . . is under consideration, the definition (16)
will be rewritten for convenience, in the following appropriate form

|ψB〉 = (uk + νkc+k )(uk′ + νk′c+k′)|ψ0k,0k′ 〉.
In ψ0k,0k′ k andk′ are certainly empty, i.e.

|ψ0k,0k′ 〉 =
∏

k′′ 6=k,k′
(uk′′ + νk′′c+k′′)|0〉.

The evolution rate of the stateψB resulting from the electron–phonon coupling can
now be worked out, using equations (10). For simplicity, we shall restrict ourselves to the
lowest order of the coupling matrixgk±qk , involving one-phonon processes only, and to low
enough temperature where phonon absorption can be ignored. Since then indices refer to
the variation of the phonon number, one can taken = 0 in the basic state, specified byB0.
The general solution (10) then becomes, to second order of the kernelK,

U
B(0)
B = 1

dB0− 〈ψB0|KQB0d−1K|ψB0〉
U
C(n)
B = − 〈ψCn|K|ψB0〉

dCn[dB0− 〈ψB0|KQB0d−1K|ψB0〉] .
(18)

First we have

dB0 = 〈ψB0|(ν + iH0)|ψB0〉 = ν + i
∑
k

|νk|2εk. (19)

Then, substitutingK = i
∑
k,k′ g

k′
k a
+
k−k′c

+
k′ck, restricted to the emission of a phonon in the

state of momentumq = k − k′, we have to calculate

d−1K|ψB0〉 = i
∑
k,k′

d−1gk
′
k a
+
k−k′c

+
k′ck(uk + νkc+k )(uk′ + νk′c+k′)|ψ0k,0k′ , 0q〉.

0q means thatn = 0 in the modeq. Obviously, the action ofc+k′ck on collective electron
states of the type (15) inψB0, can only proceed according to the scheme

(. . .0k′ , . . .1k, . . .)→ (. . .1k′ , . . .0k, . . .)

with the probability amplitudeuk′νk. The resultant eigenvalues ofd−1 are all distinct from
each other but they can be averaged without significant error, since the overall energy
distribution is sharply peaked on its mean valueεB =

∑
k |νk|2εk (equation (19)). In the

initial state,d−1 is thus averaged into(ν+ iεB)−1, and since in the abovek→ k′ transition
the energy is necessarily increased byεk′k = εk′ − εk, the averaged value ofd−1 becomes
[ν+ i(εB + εk′k+ωk−k′)]−1 in the final state. A detailed proof is given in appendix C. The
situation being relatively similar for thek′ → k transitions, one obtains

d−1K|ψB0〉 = i
∑
k′k

uk′νkg
k′
k

ν + i(εB + εk′k + ωk−k′) |ψ0k,1k′ , 1k−k′ 〉. (20)

Owing to the presence of the emitted phonon, the undressed intermediate states are
orthogonal toψB0 as required. It is now possible to write out the self-energy to second
order

i6B0 = dB0〈ψB0|(I + d−1KQB0)
−1d−1K|ψB0〉 = −〈ψB0|KQB0d

−1K|ψB0〉 + · · ·
=
∑
k′,k

|gk′k |2
|uk′ |2|νk|2

ν + i(εB + εk′k + ωk−k′) . (21)
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3.1. Single-particle self-energy

Heretofore the results refer to the overall system, and we now proceed to seek how they could
be derived equivalently in a one-particle scheme, in the spirit of a mean-field approximation.
In the case of independent particles, the poles of the Laplace transformU(ν) reduce to a
sum over individual energies. Therefore, an equivalent one-body description can only be
derived from a recast of the energy arising in the many-body denominators into a sum of
identicalk contributions. Of course, the procedure is only approximate because, conversely,
the convolution of the resulting one-body Laplace transforms does not necessarily restore
rigorously the initial many-body form.

The required form of the denominators in equations (18) will be obtained by substituting
|uk′ |2 = 1− |νk′ |2, and collecting terms in|νk|2, |νk′ |2, . . . in expression (21) of the self-
energy, which gives

dB0+ i6B0 = ν + i
∑
k

|νk|2εk +
∑
k

|νk|2
∑
k′
|gk′k |2

×
[

1

ν + i(εB + εk′k + ωk−k′) − |νk
′ |2 ν + i(εB + ωk−k′)

[ν + i(εB + ωk−k′)]2+ ε2
k′k

]
. (22)

On account of the symmetry relationship of the phonon energies,ωk−k′ = ωk′−k, the
symmetric terms in|νk|2|νk′ |2 have been combined with each other. The first term in the
rectangular bracket represents a simple correction to the unperturbed electron energy, and
in the second one we recognize the Frölich coupling, which may give rise to an attractive
interaction [1].

Separating out a singlek contribution now reduces to a translation ofν by an amount
equal to(−i) time the total energy of all other particles, in statesk′ 6= k. In the denominators
of the self-energy itself, i6B0, the total electron energy only involves its unperturbed part
εB , which we split conveniently asεB = εBk + |νk|2εk. It follows that the same translation
can accordingly be restricted toεBk therein. In fact, this customary approximation also
lies in the natural limits of the treatment (corrections are omitted in corrective terms). As
aforementioned, this could be improved by pushing the method one step further, in which
the perturbation corrections would appear, in turn, in the self-energy denominators.

For notational simplicity, the unperturbed energy of thek state, |νk|2εk, which will
simply give rise to a factor exp(−i|νk|2εkt), in the original time-dependent functions, will
also be temporarily included in the translation, and only written out when needed. Taking
apart the occupation factor|νk|2 (see below), the resulting single-particle self-energy6k(ν),
such that6B0 =

∑
k

6k(ν), will then be given by

6k(ν) = 4k(ν)− i0k(ν) = −i
∑
k′
|gk′k |2

[
1

ν + i(εk′k + ωq) − |νk
′ |2 ν + iωq
(ν + iωq)2+ ε2

k′k

]
.

(23)

Strictly speaking, knowledge of the self-energy is sufficient to derive most physical
quantities of interest, as the energy spectrum and the density of states of quasiparticles.
However, it might be useful to introduce aneffectivesingle-particle interaction potential in
the framework of the same formalism, and to appreciate the related approximations. Such a
potential must lead to the same expression (23) of the self-energy, in a parallel one-particle
treatment, still based on the general solution (10) forU(ν).

Let us consider, for definiteness, thek→ k′ transitions pertaining to phonon emission.
We therefore factorize out the related one-particle energy denominatorν + i(εk′k + ωq), in
equation (23). The quasiparticle approximation, valid for times smaller than the quasiparticle
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lifetime, allows us to taket ∼ 0, i.e. ν →∞, in the remaining factor. Thus we obtain the
physically expected result

6k(ν) = −i
∑
k′

|gk′k |2|uk′ |2
ν + i(εk′k + ωq) (24)

which clearly imposes the following effective potential

Vk =
∑
k′
gk
′
k uk′a

+
q c
+
k′ck. (25)

6k(ν) is just retrieved usingVk in the single-particle general form

6k(ν) = −i〈k|VkQkd
−1Vk|k〉

(the n indices are omitted), and the single-particle solutions (including the translation by
|νk|2εk) can be written, accordingly, as follows

Ukk (ν) =
1

ν + i|νk|26k(ν) Uk
′

k (ν) =
igk

′
k uk′νk

[ν + i(εk′k + ωq)][ν + i|νk|26k(ν)] . (26)

Expressions (26) describe a typical sequence of events, occurring continuously in the
dynamical evolution of thek components of the quasiparticle states, assumed to be initially
occupied (to the fractional amount|νk|2). The real part of i6k(ν) in the denominators gives
rise to the decay of the initial occupancy, described by the diagonal elementsUkk (ν), in a
few lifetimes. In the meantime, the denominatorν+i(εk′k+ωq) in the off-diagonal elements
Uk

′
k (ν) will give rise to a steady-state in exp[−i(εk′k+ωq)t ], restoring the unperturbed states

(see equations (29) and (30) below).

Figure 1. Contour in the complex plane of the Laplace
variable ν(ξ, η), used in the calculation of the evolution
operator. The cut is generated by the quasicontinuous set
of poles along theη-axis, in the presence of coupling.
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Before proceeding further, we have to make some additional remarks on expressions (26)
and to give a more explicit form to the self-energy. Owing to the discretized summation
over k′(= k − q) in equations (23)–(24), the poles of theU(ν) components are roots of
an equation of very high order. It can be shown [6] that they are, in addition, the product
by (−i) of the eigenvalues of a Hermitian operator, sayH0 + V , and, therefore, purely
imaginary quantities. Thus, collisions give rise to a quasicontinuous spectrum extending in
the vicinity of the unperturbed roots−iεk, along the imaginary axis, in the complex plane
of the Laplace variableν(ξ, η). Their extension, schematically pictured by the segment
(−iε2,−iε1) (figure 1), depends on both the range of the collision potential and theωq
spectrum. In the quasicontinuum limit, this pole array tends towards a cut, outside which
there is no pole in the complex plane. The integration along the cut requires the prior
summation byk′ (or q) which is, therefore, to be evaluated forν → ±0+ iη, so reducing
to a Cauchy type of integration. From equation (23) we find

4k(η)− i0k(η) = lim
ξ→±0

∫ ∞
0
|gk′k |2s(ωq)

[
− 1

η + εk′k + ωq − iξ

+1

2
|νk′ |2

(
1

η + εk′k + ωq − iξ
+ 1

η + εkk′ + ωq − iξ

)]
dωq.

s(ωq) denotes the phonon density of states. Hence, in terms of the effective potential above
defined (equations (24)–(25)),

4k(η) = −
∫ ∞

0

|gk′k |2|uk′ |2s(ωq)
η + εk′k + ωq dωq

0k(η) = π

2

∫ ∞
0
|gk′k |2|uk′ |2s(ωq)δ(η + ωq + εk′k) dωq.

(27)

The definition of0k(η) is slightly changed into sgn(ξ)0k(η) so as to single out the change of
sign withξ . The integral in the first equation is to be taken in principal part. Equations (27)
define the self-energy components as functions of the quasiparticle energy variable−η.

The original of the first equation (26) can now be written as follows

Ukk (t) =
e−i|νk|2εk t

2π i

∫
cut

eiηεk t i dη

i[η + |νk|24k(η)] + sgn(ξ)|νk|20k(η) . (28)

The imaginary part of the poles in the integrand yields the quasiparticle spectrum. At the
Fermi level,εk = εkF = 0, we haveηF = 0, and the damping function0k(η) generally
starts from zero because of phase space limitations, which validates the Fermi liquid scheme
[7].

Further calculations require detailed knowledge of the electron and phonon spectra.
A simple result is obtained if the self-energy components are slowly varying functions,
averaged into constants,4k, 0k, in the relevant integration range. Only the right-hand edge
of the cut gives a nonzero result

Ukk (t)
∼= e−i|νk|2εk t

2π i

∫ +∞
−∞

eiηt i dη

i[η + |νk|24̄k] + |νk|20̄k
= exp[−i|νk|2(εk + 4̄k − i0̄k)t ]. (29)

A similar expression for the off-diagonal elements (26) can be directly derived from the
preceding one, with the help of elementary rules,

Uk
′

k (t) = igk
′
k uk′νke−i|νk|2εk te−i(εk′k+ωq)t

∫ t

0
ei(εk′k+ωq)t ′ei|νk|2εk t ′Ukk (t

′) dt ′
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= gk′k uk′νk
exp[−i|νk|2(εk + 4̄k − i0̄k)t ] − exp[−i(|νk|2εk + εk′k + ωq)t ]

i(εk′k + ωq)− |νk|2(i4̄k + 0̄k)
.

(30)

We note that the relevant quantities relative to quasiparticle states are weighted by
the bare particle quantum occupation,|νk|2. This is of course a natural consequence of the
forced reduction to a one-particle problem, and the fractional initial occupation of thek state
which is simply passed on to the quasiparticle state throughout the formalism. It follows
that this weighting factor must be dropped (i.e.|νk|2ν substituted forν) to find the proper
quasiparticle spectrum and the damping function from the poles ofUkk (ν) (equations (26)),
as was done in equations (23)–(24).

The results (29)–(30) exhibit well the essential features of the above-mentioned time
dependence, and especially the vanishing of quasiparticle states in a few lifetimes,τk = 0̄−1

k .

3.2. Density of states and probability amplitudesuk, νk.

Analogously to Green function methods, the density of statesρk(η) at givenk and−η,
is deduced from the real part of the diagonal elementsUkk (ν), in the limit ξ → +0. A
detailed proof is given in appendix B. More precisely one obtainsρk(η)/|νk|2, for the above-
mentioned reasons, thereby eliminating the weighting factor|νk|2. From equations (23) and
(26), we thus have

ρk(η) = 1

π
Re

1

i[η + εk +4k(η)] + 0k(η) =
1

π

0k(η)

[η + εk +4k(η)]2+ 02
k(η)

. (31)

The unperturbed energyεk is reinserted, except, for simplicity, in the self-energy which is
only poorly dependent on it owing to the integration byωq.

ρk(η) should satisfy the general sum rule∫ +∞
−∞

ρk(η) d(−η) = 1 (32)

which simply expresses that the initial norm of thek state is redistributed over the whole
spectrum by the interaction. In the present formalism, this is satisfied as a consequence of
the norm conservation in the solutionU(t). Even though the latter remains at any time, the
quasiparticle approximation imposes limitation to small times. It is shown in appendix D
that the sum rule (32) forρk(η) as given by (31), can be derived, in particular att = 0,
from the unitarity ofU(t) expressed in the Laplace space.

The total density of states is deduced fromρk(η) through integration overk, using the
bare particle density of states,ρ(0)(εk),

ρ(η) = 1

π

∫ +∞
−∞

0k(η)ρ
(0)(εk) dεk

[η + εk +4k(η)]2+ 02
k(η)

. (33)

As expected, the broadening of the bare particle levels is determined by the coupling
strength,0k ∝ |gk−qk |2.

We finally turn to the calculation of the probability amplitudes,|uk|2, |νk|2. As the
latter describe the change of bare particle states dues to the interaction, they are naturally
defined atT = 0K, where all states below the Fermi level are occupied,

|νk|2 =
∫ 0

−∞
ρk(η) d(−η). (34)
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In the above simplifying assumptions, this gives

|νk|2 = 1

π

∫ 0

−∞

0̄k d(−η)
(η + εk + 4̄k)2+ 0̄2

k

= 1

2
− 1

π
arctg

εk + 4̄k
0̄k

. (35)

|νk|2 tends towards 1 ifεk →−∞, and towards 0 ifεk →+∞, so recovering the smearing
of the Fermi function of bare particles over a range0k, of the order of the interaction
strength.

At finite temperature the statistical average must be included in the initial state, which
at once represents the steady state in our self-consistent treatment. The momentumk is
still regarded as a good quantum number in passing from bare particles to quasiparticles,
and the quasiparticle creation and annihilation operators are close to those of bare particles,
apart from a frequency shift and a small dispersion due to damping [18], as accounted
for in the density of statesρk(η). Since quasiparticles behave like independent fermions
(equation (12)), a simple way to include the thermodynamical average in the occupation
probability of thek state will consist in inserting the Fermi statistics, via the density of
states, in equation (34)

|νk(T )|2 =
∫ +∞
−∞

ρk(η)f (−η) d(−η). (36)

We have a similar complementary expression for|uk(T )|2.

4. Summary and conclusions

In summary, we have proposed a new means of solving the dynamics of interacting electron
systems, especially the calculation of self-energy, seemingly simpler than the widely spread
Green function methods. The components of the many-body interacting states on the
unperturbed states are determined in a self-consistent way through the resolution of the
Laplace transformed equation of the evolution operator, within the framework of a so-
called determinantal method, previously published. Owing to the conservation of the norm
in the solution, the proper self-energy parts, as given by the Dyson equation, arise directly
therein, in a quite natural way, along with the quasiparticle spectrum. The related density
of states is shown to derive from the diagonal elements of the evolution operator, and the
probability amplitudes entering the definition of the dressed states, including statistics, are
directly calculated through integration over the quasiparticle spectrum, in the Laplace space.

The overall behaviour is well pictured by the evolution, in real time, of typical individual
processes, in a direct treatment, involving elementary mathematics based on the linear
system theory and the Laplace transform, which renders it relatively easy to read the physical
content. Also, inherent approximations are well brought out, such as limitations imposed
by the quasiparticle damping, the reduction to a one-body problem, or in the introduction of
the statistics. The need to proceed self-consistently with fractional occupations due to the
coupling itself is emphasized. As a consequence, all relevant quasiparticles quantities then
arise with the same occupation weight. In an early paper by Frölich [1], these occupations
were properly taken into account from the beginning, and determined by an extremum
method. This is not always clear in Green function techniques, where particles (holes)
travelling in positive (negative) time areartificially added to the system. Statistical factors
are then introduced in the averaging procedure [19, 20], while the quantum occupations in
the ground state are retrieved from the discontinuities of the Green function, in a quite
formal way [18].
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For the sake of simplicity, the problem was illustrated by the electron–phonon coupling
in a metal, at lowest order, ignoring screening, Coulombic correlations, and extra damping
effects. Explicit results were obtained in equations (29–30) and (35), within our simplified
assumption of constant self-energy components. This could be appreciably improved by
taking into account theη dependence of the self-energy, at least in the form of suitable
expansions, which should then yield the mass renormalization owing to the interactions, such
as in Eliashberg’s theory [5, 20, 21]. Also the higher-order terms arising in the expansion
of the S−1

bn ’s (equations (10)) (vertex corrections) could be taken into account. In the
case of electron–phonon coupling, they were shown by Migdal [3] to be only of order of
the adiabatic parameter,(m/M)

1
2 , but the occurrence of strong interactions requiring such

corrections was recently pointed out [21, 22]. Finally, the reliability of the method provides
us with opportunity to further more detailed studies in which these refinements could be
included.

Appendix A. Operational form of the determinantal solution

Given the starting stateb, introduce the convenient notation|U〉 = U(t)|b〉, with |U0〉 ≡ |b〉.
Equation (3) is then rewritten in the following form

|U〉 = (I + d−1K)−1d−1|b〉.
As d is diagonal, we haved−1|b〉 = d−1

b |b〉, with db scalar. Further,Pb andQb denoting
the projectors on theb state and its complementary space, respectively, one can substitute
(I + d−1KQb)|b〉 for |b〉 in the r.h.s. without change. Then, reversing the operators in the
r.h.s., we obtain

(I + d−1KQb)
−1(I + d−1K)|U〉 = d−1

b |b〉.
Obviously the determinant of the matrixI + d−1KQb is the diagonal minorDb

b of the
matrix I +d−1K, hence recovering the solution in the form (5). The above equation is then
rewritten more compactly, using the splittingd−1K ≡ d−1KQb + d−1KPb,

(I + S−1
b d−1KPb)|U〉 = d−1

b |b〉
with Sb = I + d−1KQb. As the matrixI + S−1

b d−1KPb has only non-zero elements in
the principal diagonal and the columnb, solving this system leads straightforwardly to
equations (6).

Appendix B. Quasiparticle density of states

Let 1 denote the determinant of the matrixd +K. Expanding1 with respect to theb row
gives

1 = db1b
b +Kb

`1
`
b, (B.1)

(` 6= b). Bearing in mind thatdk = ν + iεk, we have

1b
b =

∂1

∂(iεb)
. (B.2)

Alternatively,1 can also be written in terms of its imaginary roots−iEj , assuming the
multiplicity mj ,

1 =
∏
j

(ν + iEj)
mj . (B.3)
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TheEj ’s denote the energy of states derived from the unperturbed ones,b, by the interaction
K. Hence, combining (B.2) and (B.3), one obtains the following expression of the diagonal
elements of the evolution operator

Ub
b (ν) =

1b
b(ν)

1(ν)
= ∂ ln1

∂(iεb)
=
∑
j

mj

ν + iEj

∂Ej

∂εb
. (B.4)

The limiting value of this expression forξ →+0 is then

lim
ξ→+0

∑
j

mj

ξ + i(η + Ej)
∂Ej

∂εb
=
∑
j

mj
∂Ej

∂εb

[
− i

η + Ej + πδ(η + Ej)
]

the real part of which can be shown to define a density of states

ρb(η) = 1

π
Re [ lim

ξ→+0
Ub
b (ν)] =

∑
j

mj
∂Ej

∂εb
δ(η + Ej). (B.5)

Indeed, if we multiply each side of equation (B.5) by oneb quantum of energy, sayδεb,
the resulting expression ofρb(η)δεb can be seen to represent the summation of the individual
mjδ(η+Ej)’s, each one of them being integrated over the shiftδEj = (∂Ej/∂εb)δεb induced
by δεb. It follows thatρb(η)δεb is just the number of quasiparticle states generated by the
initial b state, so definingρb(η) as the quasiparticledensity of states at a givenb state.

Appendix C. Energy denominators in thek→ k′ transitions

We calculate the change of thed−1 mean eigenvalue upon the electron transitionk→ k′,
with respect to its initial value,(ν + iεB)−1. Ignoring the phonon states, we have

d−1c+k′ck|ψB〉 = (c+k′ckd−1+ [d−1, c+k′ck])|ψB〉. (C.1)

Let us separate out thek andk′ states in the unperturbed energy

d−1 = 1

ν + iH0k′k + iEk′k
with H0k′k =

∑
k′′ 6=k′,k εk′′c

+
k′′ck′′ andEk′k = εk′c+k′ck′ + εkc+k ck. Obviously,Ek′k andc+k′ck

commute withH0k′k and the magnitude of theEk′k eigenvalues are very small compared
with those ofH0k′k which involve a summation over states. Thus, we can write the following
first-order expression without significant error,

d−1 = 1

ν + iH0k′k
−
(

1

ν + iH0k′k

)2

iEk′k.

Hence,

[d−1, c+k′ck] = −
(

1

ν + iH0k′k

)2

i[Ek′k, c
+
k′ck] = −

(
1

ν + iH0k′k

)2

iεk′kc
+
k′ck.

(εk′k = εk′ − εk). Equation (C.1) becomes

d−1c+k′ck|ψB〉 =
[

1

ν + iεB
−
(

1

ν + iεBk′k

)2

iεk′k

]
c+k′ck|ψB〉

with εBk′k eigenvalue ofH0k′k. As |εk′k| � |εB |, |εBk′k|, and |εBk′k| ∼= |εB |, we can also
write,

d−1c+k′ck|ψB〉 =
i

ν + i(εB + εk′k)c
+
k′ck|ψB〉 =

i

ν + i(εB + εk′k)uk
′νk|ψ1k′0k〉.
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Appendix D. Norm of the evolution operator in the Laplace space

The norm of the evolution operator can be directly calculated in the Laplace space, by
means of convolution integration. Consider the diagonal componentUkk (ν), equation (26).
The norm att = 0, is thus given by

|Ukk (t = 0)|2 = lim
ν→∞

ν

2π i

∫
C

dν ′

[ν − ν ′ + i|νk|26k(ν − ν ′)][ν ′ − i|νk|26∗k(ν ′)]
.

The result is insensitive to|νk|2 which can be dropped. The integrand now exhibits a second
cut translated byν from the first one (figure D1), but according to the convolution theorem
which requiresc < ξ , this cut is out of the contourC. Therefore, the integration is only
to be taken along the cut lying on theη′-axis, where, from equation (23) (with the slight
redefinition of0k(η) in equation (27)),

6k(ν
′)→ξ ′→±0 4k(η

′) = isgn(ξ ′)0k(η′).

Hence, by reinserting|νk|2εk and eliminating|νk|2, we obtain

|Ukk (t = 0)|2 = 1

2π i

∫
cut

dν ′

ν ′ − iεk − i6∗k(ν ′)

= 1

2π i

[ ∫ +∞
−∞

dη′

η′ − εk −4k(η′)− i0k(η′)

+
∫ −∞
+∞

dη′

η′ − εk −4k(η′)+ i0k(η′)

]

Figure D1. Contour used in the complex plane of the
Laplace variableν′(ξ ′, η′) for the calculation of the
norm of the quasiparticle states, with the help of the
convolution theorem. The cut translated byν, with
ξ > 0, is located outside the contour.
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= 1

π

∫ +∞
−∞

0k(η
′) dη′

[η′ − εk −4k(η′)]2+ 02
k(η
′)
.

The integration is the same as in equation (32), and the result is necessarily 1, because
of norm conservation. This can be readily verified in the simple model with constant
self-energy components.
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